DILATATION ESTIMATES FOR QUASICONFORMAL EXTENSIONS[†]

BY MARJATTA NÄÄTÄNEN

ABSTRACT

Let D and D' be ring domains in B^n , with S^{n-1} as one boundary component, and let $f: \overline{D} \to \overline{D}'$ be a homeomorphism which is K-quasiconformal in D and with $f(S^{n-1}) = S^{n-1}$. According to a result of Gehring $f|S^{n-1}$ admits an extension $g: \overline{B}^n \to \overline{B}^n$ which is quasiconformal in B^n . We find here an upper bound for the dilatation of g in terms of n, K, and mod D.

1. Introduction

1.1. It is known that the following extension theorem holds in \bar{R}^n (theor. 1, [2]):

THEOREM 1. Suppose that D_1 and D_2 are Jordan domains in \bar{R}^n with $\bar{D}_1 \cap \bar{D}_2 = \emptyset$ and that B_1 and B_2 are open balls in R^n with $\bar{B}_1 \cap \bar{B}_2 = \emptyset$. Suppose also that f is a homeomorphism of $C(D_1 \cup D_2)$ onto $C(B_1 \cup B_2)$, that f is quasiconformal in $C(\bar{D}_1 \cup \bar{D}_2)$ and that $f(\partial D_i) = \partial B_i$ for i = 1, 2. Then there exists a homeomorphism f^* of $C(D_2)$ onto $C(B_2)$ such that f^* is quasiconformal in $C(\bar{D}_2)$ and $f^* = f$ in ∂D_2 .

We are concerned with finding an upper bound for the maximal dilatation K^* of f^* under the additional hypothesis that D_2 is an open ball. The method is to reduce the situation by auxiliary conformal mappings to the case where lemma 2 [2] applies and to estimate the maximal dilatations of the auxiliary mappings h of lemma 1 [2] and g of lemma 2 [2].

1.2. The results. With the notation of Theorem 1, let $A = C(\bar{D}_1 \cup \bar{D}_2)$, m = mod A, and let K(f) be the maximal dilatation of f. Let

Received January 3, 1977

¹ This work was started during a visit to Université de Paris, financed by a cultural exchange program between France and Finland.

$$F(n, K, m) = \{f \mid f \text{ as in Theorem 1, } K(f) \leq K\}.$$

For $f \in F(n, K, m)$ denote

 $F^*(f) = \{f^* | f^*: CD_2 \rightarrow CB_2 \text{ homeomorphism, quasiformal in } C\bar{D}_2,$ $f^* = f \text{ in } \partial D_2\},$

$$\varphi(n, K, m) = \sup \{\inf \{K(f^*) | f^* \in F^*(f)\} | f \in F(n, K, m)\}.$$

If D_2 is an open ball, we show in (5.9) that for every $f \in F(n, K, m)$ there exists an $f^* \in F^*(f)$ with

$$K(f^*) \leq C_1(n, K)C_2(n, K)^{\exp(2 \operatorname{mod} A)} (1 + K^{2n} \operatorname{mod} A^{-2n}),$$

where $C_2(n, K) > 1$. Since the upper bound only depends on n, K, and m = mod A, it is also an upper bound for $\varphi(n, K, m)$. By (5.10), the upper bound grows as $\text{mod } A \to 0$ like

$$C_3(n, K) \operatorname{mod} A^{-2n}$$
.

In (5.13) and (5.14) this is compared with an example of a function with large maximal dilatation for n = 2, K = 1.

 φ is a decreasing function of m = mod A. This is seen as follows: Let m' < m, $f \in F(n, K, m)$ and f' be a restriction of f into a ring domain $A' = C(\bar{D}_1' \cup \bar{D}_2)$ with mod A' = m'. The modulus m' is attained because of the continuity property of the modulus [1]. Then $F^*(f) = F^*(f')$, hence $\varphi(n, K, m) \leq \varphi(n, K, m')$.

It would seem natural to conjecture $\lim \varphi(n, K, m) = K$ as $m \to \infty$.

2. Terminology

We let R^n denote the *n*-dimensional euclidean space, $n \ge 2$, and \overline{R}^n its one point compactification. For each set $E \subset \overline{R}^n$ we let ∂E , \overline{E} and CE denote the boundary, closure, and complement of E in \overline{R}^n . Finally for E, $F \subset \overline{R}^n$ we let d(E,F) denote the euclidean distance between E and F, and G the diameter of E.

A homeomorphism f of a domain $D \subset \overline{R}^n$ is said to be K-quasiconformal, $1 \le K < \infty$ if it satisfies the double inequality

$$M(\Gamma)/K \le M(f(\Gamma)) \le KM(\Gamma)$$

for each family of curves Γ in D, where $M(\Gamma)$ is the n-modulus of Γ , see [6, 6.1]. The maximal dilatation of f is defined as the least K for which f is K-quasiconformal.

We denote $B^n(x_0, r) = \{x \in R^n \mid |x - x_0| < r\}, S^{n-1}(x_0, r) = \{x \in R^n \mid |x - x_0| = r\}, S^{n-1}(r) = S^{n-1}(0, r), S^{n-1} = S^{n-1}(0, 1) \text{ and } \omega_{n-1} = m_{n-1}(S^{n-1}).$

For definitions of a ring domain, condenser, modulus of a ring domain, capacity of a condenser, and their relations with modulus of a curve family, see [4] and [7].

3. Construction

- 3.1. Normalization. We start by normalizing the situation in the following manner: Let \mathcal{A} , $\mathcal{A}' \subset \overline{R}^n$ be ring domains and $F: \overline{\mathcal{A}} \to \overline{\mathcal{A}}'$ be a homeomorphism such that $F | \mathcal{A}$ is K-quasiconformal. Denote the components of the complement of \mathcal{A} by $\overline{\mathcal{D}}_1$, $\overline{\mathcal{D}}_2$ and those of \mathcal{A}' by $\overline{\mathcal{B}}_1$, $\overline{\mathcal{B}}_2$. Suppose that \mathcal{D}_2 , \mathcal{B}_1 and \mathcal{B}_2 are balls and \mathcal{D}_1 a Jordan domain. By using auxiliary conformal mappings we can assume that \mathcal{D}_2 and \mathcal{B}_2 are lower half-spaces. Suppose further that $F(\partial \mathcal{D}_1) = \partial \mathcal{B}_1$ for i = 1, 2. Denote $b = d(\partial \mathcal{D}_1, \partial \mathcal{D}_2)$, $d = diam(\mathcal{D}_1)$.
- 3.2. Construction. Let $y_1 \in \partial \mathcal{D}_1$ be a point with maximal distance from $\partial \mathcal{D}_2$ (Fig. 1). We choose a point $Q_R \in \mathcal{D}_2$ on the line ρ through y_1 , normal to $\partial \mathcal{D}_2$, such that $R = d(Q_R, \partial \mathcal{D}_2) = b + d$ and make a reflection I_1 in $S^{n-1}(Q_R, R)$. Let

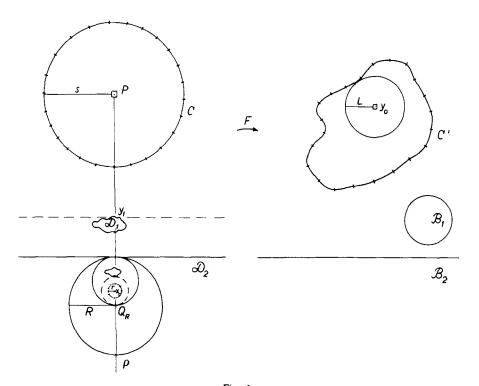


Fig. 1

 $B^n(x_0, h/2)$ be the biggest ball in $I_1(\mathcal{A})$ such that $x_0 \in \rho$ and $Q_R \in S^{n-1}(x_0, h/2)$. Then $h = d(I_1(y_1), Q_R)$ and we have, by denoting h = 4r,

$$(3.3) 4r = h \ge R^2/(R+b+d) = R/2.$$

Next make a reflection I_2 in $S^{n-1}(x_0, r)$, followed by the normalization $N_1: x \mapsto (x - x_0)/r$. Denote $N_1 \circ I_2 \circ I_1(\mathcal{D}_i) = D_i$, i = 1, 2. Let $a = d(0, \partial D_2)$, $a_1 = \max\{|y|: y \in \partial D_1\}$, $a_2 = \max\{|y|: y \in \partial D_2\}$. By (3.3)

(3.4)
$$a = (R/r - 2)^{-1} \ge 1/6, \quad a_1 = 1/2 = a_2.$$

Hence, the maximal dilatation K_3 of the mapping g of lemma 2 [2] has an upper bound

(3.5)
$$K_3 = (\log a/\log a_2)^{n-1} \le (\log 6/\log 2)^{n-1} < 3^{n-1}.$$

For the maximal dilatation K_2 of the mapping h of lemma 1 [2] we still have to deform the image with two conformal mappings.

Consider the set $C = (N_1 \circ I_2 \circ I_1)^{-1} S^{n-1}$. It is a sphere in the upper half-space H. Denote $C = S^{n-1}(P, s)$. Then $F(C) = C' \subset H$. Let $y_0 = F(P)$, $L = d(y_0, C')$, and I_3 be the reflection in $S^{n-1}(y_0, L)$. Denote $I_3(\mathcal{B}_i) = B^n(P_i, r_i) = B_i$, i = 1, 2, and let $t = d(B_1, B_2)$. Let N_2 be the normalization $x \mapsto (x - y_0)/(L(1 + \varepsilon))$ with $\varepsilon > 0$ and let $f = N_2 \circ I_3 \circ F \circ (N_1 \circ I_2 \circ I_1)^{-1}$. Then $f: C(D_1 \cup D_2) \to C(N_2(B_1) \cup N_2(B_2))$ fulfills the conditions of lemma 2 [2], and the formula for K_2 of lemma 1 [2] is

(3.6)
$$K_2 = (1 + 9(1 + \varepsilon)L/t)^n.$$

4. Estimation of K_2

4.1. To estimate K_2 we need a positive lower bound for t/L. Denote $C'' = I_3(C')$ and $l = d(P_2, C'')$. We write the identity

$$\frac{t}{L} = \frac{t}{\min(r_1, r_2)} \frac{\min(r_1, r_2)}{l} \frac{l}{L}$$

and find positive lower bounds c_i , $i = 1, \dots, 4$ (which depend only on n, K, and mod \mathcal{A}) for $t/\min(r_1, r_2)$, l/L, r_1/l and r_2/l , respectively. Then by (3.6)

(4.2)
$$K_2 \leq (1 + 9(1 + \varepsilon)/(c_1c_2\min(c_3, c_4)))^n.$$

4.3. The constant c_1 . We derive an estimate for c_1 such that $t/\min(r_1, r_2) \ge c_1$. Let $r = \min(r_1, r_2)$ and let G be the ring domain with two balls of radius r at a distance t as components of the complement. Then $\operatorname{mod} G$ is obtained by mapping G conformally onto a concentric spherical ring and

$$\mod \mathcal{A}/K^{1/(n-1)} \le \mod \mathcal{A}' \le \mod G = \log(a + (a^2 - 1)^{1/2}),$$

where $a = x^2/2 + 2x + 1$ and t/r = x. Hence $t/r \ge \min(1, c^2)$, where $c = (\exp(\mod \mathcal{A}/K) - 1)/8$ and we can choose

$$(4.4) c_1 = \min(1, c^2).$$

- 4.5. In order to estimate c_2 , we derive an auxiliary result which is based on the following Lemma 1, which follows from lemmas 1 and 2 in [3]:
- LEMMA 1. Suppose that $B \subset R^n$ is an open ball, that E and F are disjoint compact sets in CB and that \tilde{E} and \tilde{F} are the reflections of E and F in ∂B . If Γ and $\tilde{\Gamma}$ are the families of curves joining E to F in $C\bar{B}$ (or CB) and $E \cup \tilde{E}$ to $F \cup \tilde{F}$ in \bar{R}^n , respectively, then

$$M(\tilde{\Gamma}) = 2M(\Gamma).$$

4.6. Lemma. Let $B \subset R^n$ be an open ball with center P, E a compact set in CB, \tilde{E} the reflection of E in ∂B and E^* and \tilde{E}^* the spherical symmetrizations [5, 2.7] of E and \tilde{E} , respectively, with respect to $\{P + \lambda e_n \mid \lambda \leq 0\}$. Then \tilde{E}^* is the reflection in ∂B of E^* .

PROOF. Suppose $B = B^n(0, s)$ and let $t \ge s$. Considering the following four cases we verify that \tilde{E}^* is the reflection in ∂B of E^* .

- 1. The case $S^{n-1}(t) \cap E$ is null is equivalent to $S^{n-1}(t) \cap E^*$ is null, $S^{n-1}(s^2/t) \cap \tilde{E}$ is null and $S^{n-1}(s^2/t) \cap \tilde{E}^*$ is null.
- 2. $S^{n-1}(t) \subset E$ is equivalent to $S^{n-1}(t) \subset E^*$, $S^{n-1}(s^2/t) \subset \tilde{E}$ and $S^{n-1}(s^2/t) \subset \tilde{E}^*$.
- 3. Suppose $S^{n-1}(t)$ meets E in a set whose (n-1)-measure A=0. Then E^* meets $S^{n-1}(t)$ exactly at the point $(0, \dots, 0, -t)$ and \tilde{E}^* meets $S^{n-1}(s^2/t)$ exactly at the point $(0, \dots, 0, -s^2/t)$.
- 4. Let A be defined as in 3 and $0 < A < \omega_{n-1}$. Then E^* meets $S^{n-1}(t)$ in a closed spherical cap of (n-1)-measure A with center at $(0, \dots, 0, -t)$. Because \tilde{E} is the reflection of E in ∂B , \tilde{E} meets $S^{n-1}(s^2/t)$ in a set whose (n-1)-measure is $(s^2/t^2)^{n-1}A$. Hence \tilde{E}^* meets $S^{n-1}(s^2/t)$ in a closed spherical cap of (n-1)-measure $(s^2/t^2)^{n-1}A$, with center at $(0, \dots, 0, -s^2/t)$.
- 4.7. Lemma. Let $B \subset R^n$ be an open ball with center 0, E_1 and E_2 compact sets in CB and Γ_2 the family of curves joining E_1 to E_2 in CB. Let E_1^* be the spherical symmetrization of E_1 with respect to $\{\lambda e_n \mid \lambda \leq 0\}$, E_2^* the reflection in the plane $x_n = 0$ of the spherical symmetrization of E_2 and Γ_2^* the family of curves joining E_1^* to E_2^* outside B. Then

$$M(\Gamma_2) \geq M(\Gamma_2^*).$$

PROOF. Denote by \tilde{E}_i the reflection of E_i in ∂B , i = 1, 2, and let $\tilde{\Gamma}_2$ be the family of curves joining $E_1 \cup \tilde{E}_1$ to $E_2 \cup \tilde{E}_2$ in \bar{R}^n . By Lemma 1 of 4.5

(4.8)
$$M(\tilde{\Gamma}_2) = 2M(\Gamma_2).$$

Next make a spherical symmetrization of the condenser $(C(E_2 \cup \tilde{E}_2), E_1 \cup \tilde{E}_1)$ with respect to $\{\lambda e_n \mid \lambda \leq 0\}$. Denote by E_1^* , \tilde{E}_1^* the symmetrizations of E_1 , \tilde{E}_1 and by E_2^* , \tilde{E}_2^* the components of the complement of the spherical symmetrization of $C(E_2 \cup \tilde{E}_2)$. Then E_2^* and \tilde{E}_2^* are the reflections in the plane $x_n = 0$ of the spherical symmetrizations of E_2 and \tilde{E}_2 , respectively. Let Γ_2^* be the family of curves joining E_1^* to E_2^* outside E_2^* and E_2^* and E_2^* to $E_2^* \cup \tilde{E}_2^*$ in E_2^* . By Lemma 4.6 E_2^* is the reflection in ∂E_2^* of E_2^* , E_2^* and by Lemma 1 of 4.5

$$M(\tilde{\Gamma}_2^*) = 2M(\Gamma_2^*).$$

Because of symmetrization, [5, 7.5]

$$M(\tilde{\Gamma}_2) \geq M(\tilde{\Gamma}_2^*).$$

Combining these inequalities with (4.8) we obtain the result.

4.9. The constant c_2 . We want to find c_2 such that $l/L \ge c_2$, where $L = \max |y - y_0|$, $l = \min |P_2 - y|$, $y \in C''$ (Fig. 2). Let Γ' be the family of curves joining $S^{n-1}(P_2, l)$ and $S^{n-1}(y_0, L)$ outside B_1 and Γ its image under $f^{-1} \circ N_2$. If Γ'_1 joins $S^{n-1}(P_2, l)$ and $S^{n-1}(y_0, L)$,

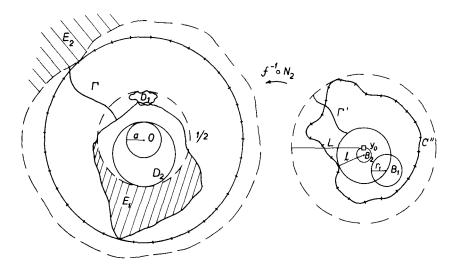


Fig. 2

$$(4.10) M(\Gamma)/K \leq M(\Gamma') \leq M(\Gamma'_1).$$

For $M(\Gamma)$ we get an estimate using Lemma 4.7 with $B = B^n(1/2)$, $E_1 = f^{-1} \circ N_2(\bar{B}^n(P_2, l)) \cap CB^n(1/2)$, and $E_2 = f^{-1} \circ N_2(CB^n(y_0, L))$. We obtain

$$(4.11) M(\Gamma) \ge M(\Gamma_2) \ge M(\Gamma_2^*),$$

where Γ_2 is the family of curves joining E_1 to E_2 outside $B^n(1/2)$ and Γ_2^* joins E_1^* to E_2^* outside $B^n(1/2)$. Since E_1 connects S^{n-1} and $S^{n-1}(1/2)$ and E_2 connects S^{n-1} and infinity, the cap inequality [6, 10.2] for E_1^* and E_2^* yields

(4.12)
$$M(\Gamma_2^*) \ge b_n \int_{3/4}^{5/4} s^{-1} ds = b_n \log (5/3).$$

To estimate $M(\Gamma_1)$ we first assume l/L < 1/2. Then the family of curves joining $S^{n-1}(y_0, r_2 + l)$ and $S^{n-1}(y_0, L)$ minorizes Γ_1' and

$$(4.13) M(\Gamma_1') \leq \omega_{n-1}(\log(L/(r_2+l)))^{1-n} \leq \omega_{n-1}(\log(L/(2l)))^{1-n}.$$

By the inequalities (4.10)–(4.13)

$$\omega_{n-1}(\log(L/(2l)))^{1-n} \ge b_n \log(5/3)/K > b_n/(2K),$$

whence $L/l \leq 2e^c$, where

$$c = (2K\omega_{n-1}/b_n)^{1/(n-1)}$$

Since $\max\{2, 2e^c\}$ is the latter, we can choose

$$(4.14) c_2^{-1} = 2e^c.$$

4.15. The estimation of c_3 . We derive an estimate for c_3 such that $r_1/l \ge c_3$. Let $L_1 = \max\{|P_1 - y| : y \in C''\}$. Then $l < L_1$ and

$$(4.16) r_1/l > r_1/L_1.$$

Let Γ'_1 be the family of curves joining \bar{B}_1 and $S^{n-1}(P_1, L_1)$ outside B_2 and Γ_1 its preimage under $I_3 \circ F$. If Γ' joins \bar{B}_1 and $S^{n-1}(P_1, L_1)$,

$$(4.17) M(\Gamma_1)/K \leq M(\Gamma_1) \leq M(\Gamma) = \omega_{n-1}(\log(L_1/r_1))^{1-n}$$

and, by (4.16) and (4.17),

(4.18)
$$l/r_1 < \exp((K\omega_{n-1}/M(\Gamma_1))^{1/(n-1)}).$$

The family of curves Γ_1 joins $\bar{\mathcal{D}}_1$ to the set $M = F^{-1} \circ I_3^{-1}(\bar{B}^n(P_1, L_1))$ in the upper half-space H. Let \tilde{M} and \tilde{D}_1 be the reflections of M and $\bar{\mathcal{D}}_1$, respectively, in ∂H . Denote $D = \bar{\mathcal{D}}_1 \cup \tilde{D}_1$ and let Γ_2 join $M \cup \tilde{M}$ and D in \bar{R}^n . By Lemma 1 of 4.5

$$(4.19) M(\Gamma_1) = M(\Gamma_2)/2.$$

We make a spherical symmetrization of the condenser $(C(M \cup \tilde{M}), D)$ with respect to $\{P + \lambda e_n \mid \lambda \leq 0\}$. Let M^* be the complement of the symmetrization of $C(M \cup \tilde{M})$ and D^* the symmetrization of D. Let Γ_2^* join M^* and D^* in R^n . Then, due to the result [5, 7.5] about symmetrization (applied after reflections in a sphere with center P and combined with 4.6)

$$(4.20) M(\Gamma_2) \ge M(\Gamma_2^*).$$

To estimate $M(\Gamma_2^*)$ we use the cap inequality [6, 10.2]. Because the diameter of \mathcal{D}_1 is d, \mathcal{D}_1 contains a point with distance d/2 from y_1 . Denote $x = |P - y_1|$. Then D^* contains at least the segment from $P - (x^2 + (d/2)^2)^{1/2}e_n$ to $P - xe_n$. The set ∂M meets $S^{n-1}(P, s)$ and separates P from \mathcal{D}_2 since $S^{n-1}(P_1, L_1)$ separates B_2 from infinity, the image of P under $I_3 \circ F$. Therefore M^* contains the segment from P to $P + se_n$, and

$$M(\Gamma_2^*) \ge b_n \int t^{-1} dt$$

with the limits of integration from x/2 to

$$x/2 + \min\{(x^2 + (d/2)^2)^{1/2} - x, s\} = -x/2 + (x^2 + (d/2)^2)^{1/2}.$$

By construction, $x = 5R^2/(12r)$, s/x = 4/5. Substituting from (3.3) $R/r \le 8$ we get, since R = b + d, after simplifying

(4.21)
$$M(\Gamma_2^*) > b_n/(50(1+b/d)^2).$$

So, by (4.18)–(4.21) we can choose

(4.22)
$$c_{3}^{-1} = \exp(100K\omega_{n-1}(1+b/d)^{2}/b_{n}).$$

4.23. The estimation of c_4 . We calculate c_4 such that $r_2/l \ge c_4$. Let Γ' be the family of curves joining B_2 and C'' outside B_1 , Γ its image under $f^{-1} \circ N_2$ and Γ'_1 the family of curves joining $S^{n-1}(P_2, l)$ and B_2 . Then

$$M(\Gamma') \leq M(\Gamma'_1) = \omega_{n-1}(\log(l/r_2))^{1-n}.$$

Hence

$$(\log(l/r_2))^{n-1} \leq \omega_{n-1}/M(\Gamma') \leq K\omega_{n-1}/M(\Gamma).$$

By construction, since R = b + d, the set D_1 is in the upper half-space H. Let Γ_2 join $S^{n-1}(a) \setminus H$ and $S^{n-1} \setminus H$ outside H. Then

$$M(\Gamma) \ge M(\Gamma_2) = \omega_{n-1} (\log a^{-1})^{1-n}/2.$$

By (3.4) $1/a \le 6$, and we can choose

$$c_4^{-1} = 6^{2K}$$

and

$$(4.24) min(c_3, c_4) = c_3.$$

5. Results

5.1. The construction in lemma 2 [2] gives a formula for the maximal dilatation K^* of the extended mapping f^* , and also of F^*

$$K^* = K^5 K_2 K_3^3$$
.

By (3.5), (4.2) and (4.24) we get with $\varepsilon \to 0$

(5.2)
$$K^* \leq K^5 3^{3(n-1)} (1 + 9/(c_1 c_2 c_3))^n.$$

5.3. An estimate for $mod \mathcal{A}$. To get an upper bound for K^* which only depends on n, K and $mod \mathcal{A}$ we derive an estimate for b/d in terms of $mod \mathcal{A}$.

By construction, after a preliminary translation \mathcal{D}_1 is contained in the half ball $E = \overline{B}^n(y_2, d) \cap \{x \mid x_n \ge b\}$, where $y_2 = (0, \dots, 0, b)$. Let $A_1 = C(E \cup \overline{\mathcal{D}}_2)$. Then $A_1 \subset \mathcal{A}$ and

$$(5.4) \qquad \mod A_1 \leq \mod \mathcal{A}.$$

To estimate mod A_1 consider the cases $d \le b/2$ and d > b/2. In the first case let $A_2 = C(\bar{B}^n(y_2, d) \cup \bar{\mathcal{D}}_2)$. Then $A_1 \supset A_2$ and

(5.5)
$$\operatorname{mod} A_1 > \operatorname{mod} A_2 = \log(b/d + ((b/d)^2 - 1)^{1/2}) \ge \log(1 + b/d).$$

In the second case E is contained in a ball with radius $(d^2 + (b/2)^2)/b$ and distance b/2 from \mathcal{D}_2 . As in (5.5)

(5.6)
$$\mod A_1 \ge \log(1 + b/(2d)),$$

and, combining (5.4)-(5.6),

(5.7)
$$\operatorname{mod} \mathcal{A} \ge \log (1 + b/(2d)).$$

5.8. The upper bound. Substituting in (5.2) the estimates (4.4), (4.14), (4.22), and (5.7) and simplifying yields

$$K^* \leq C_1(n, K)C_2(n, K)^{\exp(2 \mod st)} (1 + K^{2n} \mod \mathcal{A}^{-2n}),$$

$$C_1(n, K) = K^5 3^{11n},$$

$$C_2(n, K) = \exp(600 nK \omega_{n-1}/b_n).$$
(5.9)

From (5.9) we see that the function

(5.10)
$$C_3(n, K) \mod \mathcal{A}^{-2n},$$

$$C_3(n, K) = C_1(n, K)C_2(n, K)K^{2n}$$

grows as mod $\mathcal{A} \to 0$ like the upper bound in (5.9), i.e. their ratio has the limit one as mod $\mathcal{A} \to 0$.

5.11. An example. Let c < 1, $B = \{z \in \mathbb{C} \mid c < |z| \le 1\}$ and let f be a conformal mapping from B onto $A = \bar{B}^2 \cap \mathbb{C}\{z \mid |\operatorname{Re} z| \le r, \operatorname{Im} z = 0\}$, such that f is symmetric with respect to the coordinate axes and normalized so that f(1) = 1. We want to find a lower bound for the maximal dilatation K^* of an extremal quasiconformal mapping $f^* \colon \bar{B}^2 \to \bar{B}^2$ such that $f^* = f$ on S^1 .

Let Γ_1 be the curvefamily joining the sets $C_1 = \{e^{i\varphi} \mid |\varphi| \le \pi/4\}$ and $C_2 = e^{i\pi}C_1$ in B and Γ'_1 its image under f. Then Γ'_1 joins the arcs $C'_1 = f(C_1)$ and $C'_2 = f(C_2)$ in A, and $M(\Gamma_1) = M(\Gamma'_1)$. Let Γ_2 be the curvefamily joining C_1 and C_2 in B^2 and Γ'_2 its image under f^* . Then Γ'_2 joins C'_1 and C'_2 in B^2 and, arguing as in the proof of lemma 1, [3], $M(\Gamma'_1) = M(\Gamma'_2)$. Since $M(\Gamma_2) = 1$,

(5.12)
$$K^* \geq M(\Gamma_2)/M(\Gamma_2') = M(\Gamma_1)^{-1}.$$

To estimate $M(\Gamma_1)$ we use the function ρ :

$$\rho(z) = 2/(\pi |z|) \quad \text{for} \quad \{z \mid \pi/4 \le |\arg z| \le 3\pi/4\},$$

$$\rho(z) = 0 \quad \text{otherwise.}$$

Then ρ is admissible for Γ_1 and

$$M(\Gamma_1) \leq \int_B \rho^2 dm = 4 \log(1/c)/\pi = 4 \mod B/\pi.$$

By (5.12)

$$K^* \ge \pi/(4 \mod B)$$
.

Since f is conformal, mod A = mod B. Hence

$$(5.13) K^* \ge \pi/(4 \operatorname{mod} A)$$

and our estimate from (5.9) is for mod A < 1/2

$$(5.14) K^* \leq C/(\operatorname{mod} A)^4,$$

where $C = 2C_1(2, 1)C_2(2, 1)^e$.

REFERENCES

- 1. F. W. Gehring, A remark on moduli of rings, Comment. Math. Helv. 36 (1962), 42-46.
- 2. F. W. Gehring, Extension theorems for quasiconformal mappings in n-space, J. Analyse Math. 19 (1967), 149-169.
- 3. F. W. Gehring, A remark on domains quasiconformally equivalent to a ball, Ann. Acad. Sci. Fenn. Ser. A I 2 (1976), 147-155.
- 4. F. W. Gehring, Inequalities for condensers, hyperbolic capacity, and extremal lengths, Michigan Math. J. 18 (1971), 1-20.
- 5. J. Sarvas, Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn. Ser. A I 522 (1972), 1-44.
- 6. J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
 - 7. J. Väisälä, Modulus and capacity inequalities, Ann. Acad. Sci. Fenn. Ser. A I 509 (1972), 1-14.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HELSINKI HELSINKI, FINLAND